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ABSTRACT:
Passive acoustic monitoring is a promising tool for monitoring at-risk populations of vocal species, yet, extracting

relevant information from large acoustic datasets can be time-consuming, creating a bottleneck at the point of analy-

sis. To address this, an open-source framework for deep learning in bioacoustics to automatically detect Bornean

white-bearded gibbon (Hylobates albibarbis) “great call” vocalizations in a long-term acoustic dataset from a rain-

forest location in Borneo is adapted. The steps involved in developing this solution are described, including collect-

ing audio recordings, developing training and testing datasets, training neural network models, and evaluating model

performance. The best model performed at a satisfactory level (F score¼ 0.87), identifying 98% of the highest-

quality calls from 90 h of manually annotated audio recordings and greatly reduced analysis times when compared to

a human observer. No significant difference was found in the temporal distribution of great call detections between

the manual annotations and the model’s output. Future work should seek to apply this model to long-term acoustic

datasets to understand spatiotemporal variations in H. albibarbis’ calling activity. Overall, a roadmap is presented

for applying deep learning to identify the vocalizations of species of interest, which can be adapted for monitoring

other endangered vocalizing species. VC 2024 Acoustical Society of America. . https://doi.org/10.1121/10.0028268

(Received 16 April 2024; revised 24 July 2024; accepted 30 July 2024; published online 9 September 2024)
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I. INTRODUCTION

Ever-increasing anthropogenic pressures on the envi-

ronment, such as habitat loss, have led to widespread popu-

lation declines in many animal species (Bender et al., 1998).

However, for many species, data on population trends are

often sparse (Jetz et al., 2019), leading to an increased

demand for wildlife population monitoring programs to

inform conservation responses (Verma et al., 2016). To help

achieve this, conservation scientists and ecologists have

turned to developing technologies to automate data collec-

tion, enabling the rapid accumulation of large volumes of

data (Piel and Wich, 2021). Although this has allowed for

unprecedented insight, it can also make practical aspects of

ecological inference challenging (Borowiec et al., 2022).

Manual extraction of relevant information from large

datasets can be time-consuming, resulting in a bottleneck at

the point of analysis (Norouzzadeh et al., 2018). This bottle-

neck is evident in data generated as part of passive acoustic

monitoring (PAM) programs, which involve the use of

autonomous acoustic sensors to collect sound recordings in

the field (Acevedo et al., 2009). Advancements in recording

device design and cost, as well as improved data storage

options, have made the task of capturing many hours of

acoustic data relatively straightforward (Morgan and

Braasch, 2021; Piel and Wich, 2021). Data must then be

browsed to identify relevant signals of interest, such as

species-specific vocalizations, often by manually listening

to each recording in full or visually inspecting the data in

spectrogram form (a time-frequency pictorial representation

of an audio signal) or both (van Kuijk et al., 2023; Clink

et al., 2023). PAM can provide a step-change ina)Email: f.j.f.van-veen@exeter.ac.uk
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standardized population monitoring of vocal species at high

temporal resolution and simultaneous large spatial scales,

which would be impossible to achieve with “traditional”

methods relying on manual data collection (Sugai et al.,
2019). However, such PAM programs often capture datasets

so large that they cannot be studied manually in full in a rea-

sonable time frame, thus, automating this limiting data-

processing step is critical (Morgan and Braasch, 2021; Clink

et al., 2023).

Machine learning has proven to be an effective solution

for fast and accurate analysis of acoustic data, including the

automated detection of signals of interest (Stowell, 2022;

Miller et al., 2023). There are many options available for

this task, including artificial neural networks (ANNs;

Mielke and Zuberb€uhler, 2013), Gaussian mixture models

(GMMs; Heinicke et al., 2015), and support vector

machines (SVMs; Noda et al., 2016), among others

(reviewed in Knight et al., 2017). These each have associ-

ated advantages, and as a result of the diversity of potential

signal types and acoustic environments, no single method is

optimal in all situations (Clink et al., 2023). However, it is

worth noting that ANNs demonstrate comparatively strong

adaptability and proficiency in understanding complex pat-

terns in data (Haykin, 2009; Goodfellow et al., 2016).

ANNs can be arranged in various architectures, each suited

for different tasks. Early work applying ANNs to animal

sound made use of the multilayer perception (MLP) archi-

tecture, where manually selected summary features, such as

syllable duration, peak frequency, etc., are used to inform

the network’s predictions (Stowell, 2022). Although MLPs

have been effective in classifying a wide variety of terres-

trial and marine animal calls, the structure of nonspeech

acoustic events can be highly variable (Kong et al., 2017),

and reducing the data to a series of manually assigned sum-

mary features can restrict the wealth of information avail-

able to train a network, potentially limiting its effectiveness

(Stowell, 2022).

Deep neural networks, such as convolutional neural net-

work (CNN) architectures, rely on feature sets that are not man-

ually selected but are, instead, learned during the training

process (Morgan and Braasch, 2021). CNNs are particularly

effective for processing visual representations of audio, such as

spectrograms, leveraging their ability to learn patterns that occur

spatially and temporally in data. This allows CNNs to learn

local features regardless of their spatial position within an image

(Knight et al., 2017). CNNs are, therefore, ideal candidates for

the automated detection of signals within bioacoustic data,

where instances of relevant features within a spectrogram are

not predefined or readily identifiable (Stowell, 2022). They

have been used to analyze vocalizations from a variety of taxa,

including insects (Hibino et al., 2021), fish (Guyot et al., 2021),

anurans (Colonna et al., 2016), birds (Narasimhan et al., 2017),

marine mammals (Miller et al., 2023), bats (Mac Aodha et al.,
2018), and other terrestrial mammals (Bjorck et al., 2019),

including primates (Wood et al., 2023).

The potential of CNNs is far from fully realized, how-

ever (Rammer and Seidl, 2019), and there are relatively few

examples of CNNs being used to answer well-defined

research questions in ecology, as is so with other deep learn-

ing approaches (Dufourq et al., 2021). Additionally, there

are few guidelines on how to approach key steps such as

model tuning and performance assessments (Knight et al.,
2017; Patterson and Gibson, 2017; Stowell, 2022). Further

case studies reporting successful applications will advance

the development of best practices for overcoming these

challenges (Dufourq et al., 2021).

Gibbons (family Hylobatidae) are ideal candidates for

the automated detection of species-specific vocalizations.

They engage in loud, highly stereotyped song bouts, which

are largely confined to a few-hour window before and after

sunrise (Cheyne et al., 2008). During a particular calling

bout, they usually emit multiple calls, which facilitates the

generation of abundant training data (Clink et al., 2023).

Because the great call is performed largely by mated

females, it is often used as an indicator of a gibbon family

group, allowing for group density and spatial distribution

estimates to be derived from great call densities, assuming

that estimates of female calling rates are available (Cheyne

et al., 2016). Furthermore, gibbons reside exclusively in

tropical forests, which are often visually challenging and

inaccessible, therefore, studying their populations using

visual methods, such as line transect and camera trap sur-

veys, is typically very difficult (Vu and Tran, 2019). For

these reasons, gibbons are model organisms for developing

and testing guidelines for automated detection. So far, this

has been performed for a handful of species, including the

Hainan gibbon (Nomascus hainanus; Dufourq et al., 2021),

Western black-crested gibbon (Nomascus concolor; Zhou

et al., 2023), Northern gray gibbon (Hylobates funereus;

Clink et al., 2023), and southern yellow-cheeked crested

gibbon (Nomascus gabriellae; Clink et al., 2024).

Here, we apply a variation of a predefined CNN archi-

tecture, DenseNet (Huang et al., 2017), to identify female

great call vocalizations of the endangered Bornean white-

bearded gibbon (Hylobates albibarbis) from a long-term

acoustic dataset. We train a detector with high precision,

which minimizes false-positive rates (i.e., the rate of detec-

tions incorrectly labelled as gibbon great calls), for applica-

tion to large acoustic datasets recorded by PAM arrays. This

can then be used to facilitate accurate population monitoring

of wild gibbons on an ever-greater spatiotemporal scale and

applied as a case study for developing automated detectors

for other endangered vocalizing species.

II. METHODS

A. Data collection

The long-term acoustic dataset used in this study

derives from the Mungku Baru Education and Research

Forest (MBERF), a �50 km2 area of tropical rainforest in

Central Kalimantan Province, Indonesia. The MBERF lies

in the center of the wider Rungan Landscape, which covers

approximately 1500 km2 between the Kahayan and Rungan

rivers north of the provincial capital of Palangka Raya. This
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represents the largest area of continuous unprotected low-

land rainforest remaining on the island of Borneo (Purnama

and Afitah, 2021). There is an estimated population of 4000

white-bearded gibbons in the Rungan Landscape and an

estimated density of 2.79 groups per km2 in the MBERF,

making the region significantly important for the conserva-

tion of the species (Buckley et al., 2018).

Eight autonomous recording units (ARUs; Song Meter

SM4, Wildlife Acoustics, Maynard, MA) were deployed

here by W.M.E. in July 2018 (see Fig. 1). These were placed

on trees, 5 m above the ground, in a dispersed grid with

approximately 1200 m between each device. The MBERF

contains a mosaic of different forest types, and the array

was designed to capture this heterogeneity with three ARUs

situated in “kerangas” (heath) forest, three in “low pole”

peat swamp forest, and two in “mixed swamp” forest, where

the latter represents a transition habitat between the former

two (Buckley et al., 2018).

The ARUs were designated to record from 4 am to 6 pm

(local time) daily to capture the full predawn and diurnal

period of ape calling and set to default settings [sensitivity

of –35 6 4 dB (0 dB¼ 1 V/pa at 1 kHz), dynamic range of

14–100 dB sound pressure level (SPL) at 0 dB gain, micro-

phone gain of 16 dB, and inbuilt preamplifier gain of 26 dB]

and recorded on two channels with a sampling rate of

24 kHz. Audio was captured in 16-bit waveform audio file

format (WAV) and saved as 1-h files. Memory cards and

batteries were changed every two weeks.

B. Manual annotation

Manually annotated training and testing datasets were

required to develop the automated detector. To create these

samples, recordings between 4 and 10 a.m. were selected

from a single day every four weeks from a randomly

selected device for each habitat (see supplementary material

A). This covers the temporal period in which most H. albi-
barbis great calls occur (Cheyne et al., 2008) and ensured

that a variety of potential sound environments (i.e.,

capturing spatial and temporal variation) were included as

training inputs to the model, improving its ability to general-

ize over a wider range of applications. The resultant subset

contained 300 h of recordings, covering 50 days spanning

from October 2018 to December 2019.

The selected sound files were loaded into the sound

analysis software Raven Pro 1.6 (K Lisa Yang Center for

Conservation Bioacoustics, 2024) and visualized as spectro-

grams using a 3462-sample Hann window with a 90% over-

lap and a 4096-sample discrete Fourier transformation. With

assistance from a team of undergraduate interns (see the

Acknowledgments), each recording was listened to in full

and visually scanned to identify instances of great calls.

These were defined as vocalizations containing introductory,

climax, and descending phrases (see Fig. 2). A selection was

created for each instance by drawing a box around the call

in the spectrogram, providing information about its time-

frequency boundaries.

Each selection was then annotated based on its com-

pleteness and quality. A selection was marked as “clear”

when the entirety of the call could be heard and was visually

clear in the spectrogram, “faint” when the whole call could

be heard but was not fully revealed in the spectrogram (and

vice versa), and very faint when the call was only partially

seen and heard (i.e., part of the great call was not captured

in the recording). Each selection was reviewed and edited

where needed by A.F.O. to prevent interobserver bias. In

total, 1611 great calls were annotated.

The manually annotated data were then randomly split

with 70% allocated for training (210 h and 1089 calls) and

30% allocated for testing (90 h and 522 calls). Due to the

ambiguous nature of “very faint” calls, they were removed

from the training process and used solely for testing thereaf-

ter. This prevented misleading information, i.e., nontarget

events, from being fed into the positive class weightings.

Models were trained using clear and faint instances (729

calls) as well as only clear instances (522 calls).

C. Automated detection

The development and testing of the automated detector

used Koogu (version 0.7.2), an open-source framework for

deep learning from bioacoustic data (Madhusudhana, 2023).

Koogu offers a variety of functions for deep learning,

including (1) preparing audio for use as input to machine

learning models, (2) training models, (3) assessing model

performance, and (4) using trained models for the automated

analysis of large datasets. For a full workflow describing

how the following steps were implemented within Koogu,

see supplementary material B.

1. Data preparation

All audio files were first down-sampled to 4500 Hz to

reduce the overall file size and improve the efficiency of

downstream computations (cf. Miller et al., 2023). The

resulting Nyquist frequency (2250 Hz) is above the highest

frequency within the great call selections (2077 Hz), and,

FIG. 1. (Color online) Map of the Mungku Baru Education and Research

Forest (MBERF; Buckley et al., 2018) shows the distribution of different

habitat types over the survey area and the location of the ARUs.
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hence, no relevant information was lost in this process. The

recordings were then split into consecutive 28 s segments

(longer than the longest manually annotated great call at

27.7 s) with a hop size of 1 s, leaving an overlap of 27 s

between clips. The waveform of each segment was normal-

ized by scaling the amplitudes to occur in the range

–1.0–1.0.

The resulting start and end times of each segment were

then compared to those from manual annotations. Segments

that fully contained the temporal extents of an annotated

great call were considered as positive inputs while segments

with partial overlap were excluded from training as these

could resemble non-great call events and, therefore, lead to

uncertainties during the training process. Segments without

temporal overlap were considered as negative inputs (i.e.,

background noise).

Spectrograms for the positive and negative classes were

then computed with an analysis window of 0.192 s and a

75% overlap. The bandwidth was also restricted to between

200 and 2200 Hz to exclude noise outside of the target fre-

quency range. This resulted in input spectrograms with a

shape of 384� 580 (height � width) pixels. To address the

imbalance between positive and negative classes, the maxi-

mum number of training inputs for each class was reduced

to 10 000. This applied all the positive class inputs while

randomly subsampling inputs from the negative class.

Following this, there were 5763 clear and 1253 faint posi-

tive class spectrograms as well as 10 000 negative class

spectrograms.

2. Data augmentation

Despite manually annotated calls showing a high vari-

ance in background noise, call duration and note length, for

example, data augmentation was applied to further improve

input variance. To do this, several predefined augmentations

supported by Koogu were applied on waveforms before con-

version into spectrograms and the spectrograms themselves.

These were performed at each epoch, i.e., each time the

model passed through the entire training dataset, during the

feeding of inputs into the model. This meant that the same

original sample could have different levels of augmentations

between epochs.

First, Gaussian noise (Schl€uter and Grill, 2015) was

added to 25% of the training input’s waveforms at each

epoch to simulate varying levels of background noise. The

amount of noise added randomly varied from –20 dB to

–30 dB below the peak dB of the input signal.

The spectrogram was then smeared and squished along

the time axis (cf. Madhusudhana, 2023). These augmenta-

tions were independently added to 20% of the input spectro-

grams each epoch at a magnitude of –1,1 (smearing

backward and forward by one frame of the spectrogram) and

–2,2 (stretching and squishing over up to two frames of the

spectrogram). This process essentially blurred inputs along

the time axis because while the target calls were contained

within a standard frequency range, the duration of the sig-

nals was highly variable.

Finally, Koogu’s “AlterDistance” augmentation was

applied to 25% of the spectrogram inputs. This aimed to

mimic the effect of increasing or reducing the distance

between the calling gibbon and the receiver by attenuating

or amplifying higher frequencies while keeping lower fre-

quencies relatively unchanged. This was applied by a ran-

dom factor between �5 dB (attenuation) and 5 dB

(amplification).

3. Network parameters and training

The DenseNet architecture was chosen as the base CNN

architecture for this study as it has been shown to achieve

comparatively high accuracy with fewer parameters, making

it efficient in terms of computational resources (Huang

et al., 2017). Early variations of the model suffered from

overfitting, occurring when the model learns noise or ran-

dom fluctuations in the training data rather than the underly-

ing pattern itself. This occurs when the model is too

complex relative to its intended task. Bearing this in mind,

the standard DenseNet architecture was adapted to a “quasi-

DenseNet” architecture (Madhusudhana et al., 2021), which

reduces the number of connections within each dense block,

limiting model size and complexity. To limit the model’s

complexity further and improve computational efficiency,

bottleneck layers were also added (cf. Huang et al., 2017).

Finally, batch normalization was enabled to improve model

convergence. For the final model architecture, see Fig. 3.

FIG. 2. (Color online) A spectrogram image of a female H. albibarbis great call, created using Raven Pro 1.6. The box represents the time and frequency

boundaries of a manually annotated selection. The time boundaries span from the start of the first introductory (a) note to the end of the last descending (c)

note. The frequency boundaries span from the lowest frequency descending (c) note to the highest frequency climax (b) note.
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Training inputs were then divided further with 15% ran-

domly selected as a validation set to evaluate the model’s

performance throughout the training process. Dropout layers

were added (Srivastava et al., 2014) at a rate of 5% to fur-

ther reduce overfitting and improve generalization. The

models were then trained over 80 epochs using the Adam

optimizer (Kingma and Ba, 2017) with a minibatch size of

24. The learning rate was initially set at 0.01 and then

reduced successively by a factor of 10 at epochs 20 and 40.

4. Testing

Trained models were then applied to the test dataset to

provide a preliminary assessment of model performance and

establish a desirable detector threshold value. To do this,

each test segment was assigned a confidence score by the

model between zero (lowest) and one (highest), indicating

how likely it was to contain a great call. Performance scores

were outputted for thresholds at an interval of 0.01, calculat-

ing the number of true positives (TPs), false positives (FPs),

and false negatives (FNs). If there was a 100% overlap

between a segment and an annotated great call and the confi-

dence score was above the threshold, it was marked as a TP.

If there was no or partial overlap and the score was above

the threshold, it was marked as a FP. If there was full over-

lap but the confidence score was below the threshold, then it

would be marked as a FN.

These quantities were used to compute recall [Eq. (1)],

precision [Eq. (2)], and F score [Eq. (3)] at each threshold

(P, precision; R, recall):

R ¼ TP= TPþ FNð Þ; (1)

P ¼ TP= TPþ FPð Þ; (2)

F ¼ 2 P� Rð Þ= Pþ Rð Þ: (3)

The optimal threshold was then selected using maximum F
score as it is a good indicator of overall model performance

(Clink et al., 2023).

Once a threshold had been decided, the model was

rerun on the test dataset audio files to produce detections

and analyze the models’ output. Neighboring segments for

which scores were above the identified threshold were

grouped to form a single detection. The score of each detec-

tion was then set as the maximum of its component segment

scores, and its start and end times were set to the start time

of the first segment and the end time of the last segment,

respectively. These detections were then outputted in the

format of Raven Pro selection tables.

D. Post-processing

Initial inspection of the models’ outputs showed that

they produced clusters of detections for each great call,

overestimating the number of calls within the data.

Detections that overlapped with the first detection in each

cluster were grouped together (see supplementary material

C). These groups were then filtered to retain only the

highest-scoring detection(s) within each group to minimize

duplicate detections for single great call events. When the

start times of the remaining selections were the same, only

one detection was retained. There was no further judication

between remaining detections when their scores were tied as

this could indicate that two great calls overlapped or

occurred close in time.

Finally, the non-post-processed and post-processed

model outputs of the best performing model were evaluated

against the manually annotated test dataset. To do this, we

compared the distribution of total detections every 5 min

across the 4–10 a.m. period using a Kolmogorov–Smirnov

test. By comparing the non-post-processed and post-

processed model outputs, this also served to validate the

effectiveness of the post-processing stage.

III. RESULTS

A. Preliminary assessment

The preliminary assessment of the best performing

model, trained on only clear calls, showed precision ranging

from 0.19 to 0.97 and recall ranging from 0.93 to 0.23 at

thresholds from 0.01 to 0.99 (Fig. 4). This gave a maximum

F score of 0.75 at a threshold of 0.36 (precision, 0.80; recall,

0.70).

FIG. 3. (Color online) Flowchart showing the final model architecture. The final model had a growth rate of 12, began with a 16-filter pre-convolutional

layer, contained 3 quasi-dense blocks with 4, 6, and 6 layers, respectively, and finished on a 32-node dense layer. Average pooling layers downscaled the

inputs by a factor of 3� 3 (height � width) in the transition blocks between quasi-dense blocks. Global average pooling was used to reduce the spatial

dimensions of outputs of the final block to the 32-node feature vectors.
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As the aim was to optimize the model for clear and faint

calls, the testing was rerun excluding very faint calls. In this

case, precision ranged from 0.12 to 0.94 and recall ranged

from 0.99 to 0.33 at thresholds from 0.01 to 0.99 (Fig. 4).

The maximum F score was improved to 0.78 at a threshold

of 0.78 (precision, 0.80; recall, 0.76). To maximize perfor-

mance for clear and faint calls while minimizing FPs, a

threshold of 0.78 was, therefore, chosen to evaluate the

model’s performance on the test dataset.

B. Comparison with manual annotations

After rerunning the model selected in the preliminary

assessment on the test dataset at the desired threshold and

processing the output, it produced 535 detections. These

were then visually analyzed in Raven Pro and compared to

the manually annotated dataset to discern the occurrences of

TPs, FPs, and FNs. In this case, a TP instance was defined

as any model detection that overlapped with a great call.

The model was found to have produced 511 TPs and 24 FPs,

missing a further 133 calls (FNs). This gives a precision of

0.96, a recall of 0.79, and an F score of 0.87.

On closer inspection of the post-processed model out-

put, 86 of the TP detections were the result of repeated

detections for singular great call events. Additionally, 22

FNs were classed as TPs before the post-processing stage.

These were created as a result of inadvertently grouping

detections in which two great calls overlapped in time or

were adjacent to one another.

Overall, the non-post-processed model identified 409

(78%) of the 522 manually annotated calls. This included

98% of all clear calls, 73% of faint calls, and 44% of very

faint calls. Out of the FN instances before post-processing,

77% were very faint calls with only 0.05% representing six

missed clear annotations. A further 38 great calls were iden-

tified, which had been missed in the manual annotation

stage, including 6 clear, 8 faint, and 24 very faint calls.

The distribution of total detections every 5 min across the

4–10 a.m. period for the non-post-processed and post-processed

model outputs were compared against the manually annotated

test dataset (Fig. 5). Kolmogorov–Smirnov tests indicated no

significant difference (D¼ 0.036, p> 0.05 and D¼ 0.045,

p> 0.05, respectively). Also, we found no significant difference

between preprocessed and post-processed data (D¼ 0.020,

p> 0.05).

IV. DISCUSSION

Our best performing model was effective at detecting

high-quality H. albibarbis great calls with a low rate of FPs.

The best performing model (F score, 0.87) exceeded previ-

ously reported SVM models for detecting gibbon vocalizations

e.g., Hylobates funereus detector, F score, 0.78 (Clink et al.,
2023), and was largely comparable to other CNN models for

gibbon great calls, e.g., Nomascus hainanus detector, F score,

0.91 (Dufourq et al., 2021) and Nomascus concolor DenseNet

detector, F score, 0.92 (Zhou et al., 2023).

We found that the best performing model detected 38

great calls that had been missed during the manual annota-

tion stage, amounting to 6.8% of the total number of target

events. Human listening is subject to error (Brauer et al.,
2016; Knight et al., 2017), and this study relied on multiple

human observers with differing levels of training to con-

struct the manually annotated dataset. Although it has been

shown that human observers with less experience may per-

form worse than some automated detectors (Jennings et al.,
2008), the consensus from multiple observers may have

reduced the level of human error (Drake et al., 2016).

Furthermore, signals with low signal-to-noise ratio (SNR)

are difficult for humans and machine learning algorithms to

detect (Knight et al., 2017). Precision and recall are often

measured relative to manually annotated datasets, but these

are not always perfect. With this in mind, it has been recom-

mended to view the manually annotated dataset as the out-

put from an alternative detector rather than a ground-truth

set (Knight et al., 2017).

As a result of the apparent likelihood of great calls to be

missed by manual annotation (Knight et al., 2017), it is

FIG. 4. (Color online) Precision-recall curves of the best performing model are tested against all calls (left) and clear and faint calls (right).
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unrealistic to presume that all target calls were identified in

the 210-h training dataset. This could pose a problem when

training the model if any of the randomly selected unanno-

tated time periods for the negative class contained target

events, potentially increasing the rate of FNs. Dufourq et al.
(2021) found that better results were obtained by specifically

including negative class segments with typical ambient

noise, such as other species’ vocalizations, which could

potentially confuse the classifier. This method of

“handpicking” the negative class could reduce the FN rate

and FP rate by negatively labelling potentially confusing

information. The low false-positive rate reported in this

study, as well as the low false-negative rate for clear calls,

suggests that our method of randomly selecting the negative

class was sufficient for our purposes. Where reducing the

false-negative rate has greater importance, such as when

identifying infrequent vocalizations, a more thorough

approach could be preferable. Nonetheless, it is important to

recognize the trade-off between ensuring that the negative

class contains as little erroneous information as possible and

the time required to construct an adequate training dataset.

In this study, we categorized selected calls according to

their quality (cf. Ca~nas et al., 2023), although we acknowl-

edge that the distinction of clear, faint, and very faint great

call selections was not based on p measurements. These cat-

egories cannot be translated directly to distance; however, in

most cases, it is likely that clear calls were recorded from

gibbons singing closer to the ARUs. Overall, our best per-

forming model identified 98% of all clear calls and only

missed six from the manually annotated dataset. This was

comparable to the human observers, who also missed six

clear calls. The model performed worse than the human

detector at detecting faint and very faint calls, however,

picking up 73% and 44% of the manually annotated instan-

ces, respectively. With this in mind, the results suggest that

detection likelihood is affected by the caller-ARU distance

(Spillmann et al., 2015). This supports the suggestion by

Jahn et al. (2017) that the difference in recall between an

automated detector and human listener is caused by the for-

mer having a smaller detection radius. Future studies should

aim to apply relationships between signal strength and the

distance of the source from the receiver to estimate call

detection probability over distance. This will help to deter-

mine the effective area being sampled by PAM studies.

Although the model did not have perfect recall, the

importance of detecting all great calls within a recording

will depend on the research question. With regard to calling

activity over time, the distribution of calling frequency

detected by the model was not significantly different from

that of the manual annotations. Therefore, our model can be

used to reliably estimate spatiotemporal variations in H.
albibarbis calling activity. Through analyzing recordings

from multiple habitats, our model could be applied to under-

stand the relative importance of forest subtypes for the spe-

cies as singing behavior is density dependent (Cheyne et al.,
2008) with less singing activity at lower group densities.

This could operate on a continuous long-term time frame,

which would be hard to achieve when relying on human

observers in the field.

For an in-depth understanding of gibbon group abun-

dance and density, further information is necessary. One

method is to use individuals as the sampling unit (Buckland,

2006) by analyzing their call structure (Clink et al., 2023) or

localizing vocalizations using estimates of direction to the

source from multiple ARUs (Stevenson et al., 2015). This

may prove highly effective at estimating gibbon abundance

and density over the short term, yet, could prove too com-

plex over the course of hundreds or thousands of hours of

audio. An alternative method is to estimate vocalization

density per unit time, apply an estimation of vocalization

rate, and then convert vocalization density into group den-

sity (Marques et al., 2013). This does require a knowledge

of the area covered by each ARU, though, for this task,

Marques et al. (2013) notes that automated detectors need

not perform extraordinarily well so long as TP and FP rates

are characterized accurately. This method does not require

for the effective area of ARUs to overlap, therefore, in the-

ory, could monitor a larger area with the same resources.

Whereas post-processing greatly reduced the number of

repeated detections for single great call events, these would

still account for many FPs if only one TP per great call is

allowed. The post-processing protocol did not seek to adju-

dicate between detections if there was a tie in the highest-

scoring instances within a group as in some cases, this repre-

sented two great call events close in time. In fact, 22 FNs

derived from instances when the grouping of detections

failed to take this into account, and limiting the number of

detections per group to one would have increased the FN

rate further. An alternative approach would be an improved

post-processing stage to better interpret the output of the

model. In audio classification, CNNs inspect audio record-

ings as image-like segments and, hence, are unable to use

broader-scale contextual information such as whether the

FIG. 5. (Color online) Histogram shows the number of great calls detected

every 5 min between 04:00 and 10:00 for the manually annotated test data-

set, as well as the output for the non-post-processed model and the post-

processed model when run on the test dataset.
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current point in a recording is preceded by a target call

(Wang et al., 2022). It has, therefore, been proposed to com-

bine CNNs with other machine learning techniques, such as

hidden Markov models (HMMs), or deep learning techni-

ques, such as recurrent neural networks (RNNs).

Postprocessing the output of a CNN with a HMM or a RNN

has been shown to improve the F score (Madhusudhana

et al., 2021; Wang et al., 2022). For instance, Wang et al.
(2022) showed that the application of a combined convolu-

tional recurrent neural network (CRNN) reduced error rates

arising from overestimation of gibbon calls (49%–54%) to

0.5%. It was noted, however, that while post-processing the

model output with a HMM performed second best, it

required much less computational power. Future work

should, thus, consider both of these options when attempting

to improve on our post-processing method.

A key aim of this study was to help address the analysis

bottleneck evident in PAM data by improving on the time

taken to manually analyze recordings. During the batch

processing stage, it took 19 s for our trained model to pro-

cess each hour of test recordings. This greatly improved on

a human processing speed of minimum 1 h per hour of audio

for this study, varying depending on the level of observer

experience. One caveat is the significant amount of time

required to construct a manually annotated dataset to train

and test a CNN when compared to other machine learning

approaches (Stowell, 2022). Despite our study depicting

how data augmentation can be effective where training data

is limited, careful consideration should be taken when under

time pressure if no training datasets are already available. In

some cases, it may be better to adopt an approach that

requires less data to develop such as a SVM or GMM (Clink

et al., 2023).

Finally, Stowell (2022) noted that it was increasingly

common to evaluate deep learning models on test sets spe-

cifically designed to differ in some respects from the train-

ing data such as location, SNR, or by season. In this case,

the model was designed with application to the MBERF bio-

acoustic dataset in mind and, hence, it is appropriate that the

test data came from the same location as the training data.

Test inputs spanned across all times of the year and were

recorded from three different habitats. This ensured that a

variety of potential sound environments were included in

the testing stage. However, for applications in other loca-

tions, especially outside the Rungan Forest Landscape, it

would be advantageous to first test the model on recordings

captured elsewhere within H. albibarbis’ range.

V. CONCLUSION

Our study demonstrates how an open-source deep learn-

ing framework can be adapted to produce a CNN capable of

detecting H. albibarbis great calls, performing at a compara-

ble level to similar CNN approaches for gibbon great calls.

Our model performed best on the highest-quality calls and

yielded a low false-positive rate, meeting the objectives of

this study. There was a much lower likelihood of successful

detection for the lowest-quality calls, however, and future

studies should aim to estimate call detection probability

over distance to determine the effective area being sampled.

Further development of the post-processing stage could

help to reduce the number of repeat detections for each call.

However, the current output can be used to estimate calling

rate over time. Further work should seek to apply this model

to long-term acoustic datasets over a variety of habitats to

study spatial and temporal variation in gibbon calling activ-

ity. Furthermore, in combination with future studies on

sound propagation of gibbon vocalizations, this represents

an opportunity to monitor H. albibarbis’ populations on an

ever-greater spatiotemporal scale. Our work presents some

key considerations to inform decision-making for such proj-

ects and a full workflow script to visualize how these can be

implemented in developing an automated detector.

SUPPLEMENTARY MATERIAL

See the supplementary material for the composition of

the manually annotated dataset, including dates, see supple-

mentary material A (SuppPub1.pdf). For the full Koogu

workflow, see supplementary material B (SuppPub2.tex).

For the post-processing script, see supplementary material C

(SuppPub3.tex).
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